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ABSTRACT 

Luminaire luminance uniformity is an important aspect that can affect perceived lighting quality, discomfort glare, and 

efficacy. While several metrics have been proposed to characterize luminance uniformity, previous studies have shown 

that current metrics such as Max:Min or Avg:Min luminance ratios can be insensitive to important differences in luminance 

gradient that may affect perceived uniformity. In an attempt to resolve this issue, previous studies incorporated a contrast 

sensitivity function for the human eye based on spatial frequency, such as in the recently proposed UHVS metric; however, 

this metric has not been comprehensively studied in relation to perceived uniformity ratings. 

The study presented in this paper aimed to examine the relationship between UHVS and perceived uniformity ratings. 

Specifically, simulated luminance patterns were presented, and participants were asked to assess uniformity using a two-

alternative forced-choice procedure. The results of 94 participants’ evaluations showed a significant correlation between 

UHVS and perceived uniformity. However, comparisons between patterns that had similar UHVS sometimes resulted in 

statistically different ratings and comparisons between patterns that had larger differences in UHVS sometimes did not result 

in a statistically significant difference in ratings. These results suggest that UHVS might be used for general guidance but 

may warrant further studies to better understand its sensitivity and improve its alignment with perceived uniformity ratings. 

Keywords: perceived uniformity, luminaire luminance uniformity, simulated patterns, uniformity metrics. 

 

1. INTRODUCTION 

1.1 Luminaire Luminance Uniformity 

Luminaire Luminance Uniformity (LLU) describes variations in luminance distribution across the face of the luminaire 

aperture and is influenced by many design variables. These variables include the luminous intensity and photometric 

distribution of LEDs, distance between LED array and optical material, spacing between LEDs, optical material properties, 

LED shape (including optical lens) and size, luminaire geometry and finish, viewing angle, and distance between observer 

and the aperture. 

Previous studies showed that uniform luminaires were perceived less glary compared to non-uniform luminaires at the 

same average luminance or illuminance at the eye.1,2 While increasing LLU is generally desired,3 it may reduce luminaire 

efficacy. This reduction occurs because improving the uniformity typically requires smoothing high luminance spots using 

more diffusive materials with lower transmittance. Overall, given the importance of LLU for visual comfort and efficacy, 

it is important to utilize a luminance uniformity metric that accurately characterizes human perception. Ultimately, a LLU 

metric can help lighting manufacturers and specifiers to make informed decisions that balance LLU and efficacy. Examples 

include selecting a luminaire with higher efficacy while delivering the same level of uniformity or selecting a luminaire 

that delivers a higher level of uniformity without compromising efficacy. 

1.2 Uniformity Metrics 

Most luminance uniformity metrics were developed with the goal of examining luminance uniformity within a space, such 

as for walls or outdoor areas,4,5 and have not been applied to luminaire apertures. Currently, a commonly used metric for 

luminance uniformity is maximum-to-minimum luminance ratio (Max:Min). Since Max:Min only relies on two points, it 

may not describe the perceived uniformity of complex spatial patterns. Another metric is the ratio of the average luminance 

to minimum luminance (Avg:Min), which was adopted in the ANSI/IES-RP-8-18 document.6 For both Max:Min and 

Avg:Min, a lower ratio implies a more uniform pattern. A third metric that is sometimes considered is the coefficient of 

variation (CV), which is the ratio of the standard deviation to the mean as shown in equation (1). This means that the entire 



 

 

 
 

luminous area is sampled, producing a more stable metric that is less likely to be affected by photometric measurement 

errors or other anomalies. For CV, a lower number implies a more uniform pattern. 

CV = 
𝜎

�̅�
 (1) 

The recently proposed entropy uniformity (EU) was shown to be exponentially related to perceived uniformity7. EU is 

equal to one when the luminous surface is entirely uniform, and zero when entirely non-uniform. In equation (2), n is the 

number of luminance points measured and pi is the ratio of the ith luminance value to total luminance from all points. 

𝐸𝑈 =
1

𝑛
∙ 𝑒𝑥𝑝 (− ∑ 𝑝𝑖 𝑙𝑛(𝑝𝑖)) 

(2) 

Metrics such as luminance ratios and the CV characterize the photometric conditions that ultimately affect a perception of 

uniformity. But the perception of luminance uniformity is also affected by the ways in which the human visual system 

processes the photometric stimulus. Ashdown8 discussed luminance gradients in relation to contrast sensitivity and 

highlighted the need to measure the human visual system’s ability to decipher luminance patterns. Another article showed 

that incorporating the contrast sensitivity function improved correlations with subjective preference of MR16 lamp beams9. 

One uniformity metric that combines photometric conditions with assumptions about visual processing is UHVS
10, which 

is uniformity based upon the human visual system (HVS). In equations (3) and (4), the variables κ, α, β, and C are constants, 

and NUHVS is the non-uniformity based on the human visual system. NUHVS weights the summation of the Fourier 

transform of the luminance pattern F(ωn) by the human visual contrast sensitivity function CSF(ωn). It is then divided by 

the addition of a constant C added to the sum of the Fourier transform (the magnitudes of all spatial frequencies present in 

the data). A UHVS value closer to one implies a more uniform pattern. 

𝑈𝐻𝑉𝑆 =
1

1 + 𝑘 ∙ 𝐶𝑉𝛼 ∙ 𝑁𝑈𝐻𝑉𝑆
𝛽

 
(3) 

 

𝑁𝑈𝐻𝑉𝑆 =
∑ 𝐹(𝜔𝑛)𝐶𝑆𝐹(𝜔𝑛)𝑛

𝐶 + ∑ 𝐹(𝜔𝑛)𝑛
 

(4) 

CSF(ωn) describes the human eye’s sensitivity to luminance contrast as a function of spatial frequency11. Sensitivity 

increases up to about three cycles (spatial wavelengths) per degree in the visual field, and then decreases slowly to where 

ten cycles per degree is barely visible10. This means that although the presence of high frequencies indicates a less uniform 

pattern with more drastic differences in luminance, past a certain frequency, the human eye is less sensitive and therefore 

less able to detect these photometric differences. 

In summary, previous studies used different uniformity metrics to examine and predict perceived uniformity. Accounting 

for CSF in uniformity metrics has likely improved these correlations10 because CSF addresses the human visual system 

ability to distinguish bright from dim areas, compared to traditional metrics solely based on a statistical analysis. However, 

the UHVS performance as a metric has not been tested using priori hypotheses. This study aimed to examine perceived 

uniformity in relation to existing uniformity metrics with a focus on UHVS. It used an online questionnaire to present 

simulated luminance patterns to a group of participants who assessed perceived luminance uniformity. We hypothesized 

that: 1) patterns that had similar UHVS value (± 0.01) would receive similar perceived uniformity ratings; 2) patterns that 

had UHVS values that differed by more than 0.01 would receive different uniformity ratings; 3) UHVS would correlate with 

perceived uniformity ratings (spearman’s coefficient r > 0.7, p < 0.05). 

 

 



 

 

 
 

2. METHODS 

The dependent variable in this study was perceived uniformity, as indicated by participants through a choice between two 

stimuli—these choices were later converted to ratings, as subsequently described. Given that this study was conducted 

online, there were inherent uncontrolled variables such as illumination conditions in participant’s room, computer screen 

settings such as contrast and brightness, the amount of time spent viewing the patterns, and any individual variability in 

contrast sensitivity. Nonetheless, the next sections discuss some measures implemented to improve the quality of data 

collected. 

2.1 Stimuli 

Eight theoretical grayscale patterns were created, using formulas subsequently described, to represent possible luminance 

patterns. Variation in the patterns was created by manipulating the number of modelled point sources, the distance between 

these sources, and the distance between the point sources and diffuser. The patterns were generated such that: 1) all patterns 

had the same average luminance when viewed on a computer screen; and 2) of the eight patterns, six were pairs having a 

similar UHVS value. Figure 1 shows the eight simulated patterns and Table 1 lists corresponding uniformity metric values. 

For UHVS calculations, default constant values of k = 5, α = 1, β = 0.5, and C = 1x10-7 were used.10 

 

Figure 1: The eight patterns used in the experiment. 

Table 1: Uniformity metrics of the eight simulated patterns. Pairs of interest are highlighted (pairs similar in UHVS, or 

different in UHVS but have visual similarity). 

Pattern UHVS Pairs 

similar 

in UHVS 

Pairs 

different 

in UHVS 

Max:Min  Avg:Min  EU CV 

A 0.95 A-B 

 

C-D 

 

E-F 

 

A-C 

 

C-E 

 

 

F-NU 

 

1.31 1.02 1.00 0.02 

B 0.96 1.31 1.04 1.00 0.03 

C 0.88 1.78 1.25 0.99 0.17 

D 0.89 1.56 1.24 0.99 0.13 

E 0.82 1.83 1.25 0.99 0.17 

F 0.81 1.98 1.17 0.99 0.11 

U 0.99 1.06 1.01 1.00 0.01 

NU 0.79 1.86 1.23 0.99 0.15 

The patterns were simulated in Python3, primarily using the NumPy and matplotlib libraries. In the simulation, two two-

dimensional arrays were created representing the point sources and diffusing material. These two planes were parallel to 

each other with a distance (D) between them (Figure 2). Assuming a cosine distribution from a theoretical point source, 

its vector intensity (N) was distributed on the diffusing plane using equations (5) and (6): 



 

 

 
 

 𝑁 = cos(𝜃) (5) 

 

𝜃 =  arctan (
([𝑋𝐿𝐸𝐷 − 𝑋𝐷𝑖𝑓]

2
+ [𝑌𝐿𝐸𝐷 − 𝑌𝐷𝑖𝑓]

2
)

1/2

𝐷
) 

(6) 

 

where X and Y represent the coordinates of LED and receiving point on the diffusing plane and N is the vector intensity 

for θ range (-90° to 90°). Vector intensities that landed outside the diffusing plane, such as those reaching side surfaces, 

were recalculated to reflect inwards towards the diffusing plane assuming 80% Lambertian reflectance of these surfaces. 

Lastly, a linear grayscale was applied to the values of the diffusing plane to generate the patterns. 

 

Figure 2: A diagram of the theoretical luminaire used to establish the luminance patterns, showing the emitting point and the 

receiver point. 

2.2 Participants 

Since computer screens from different manufacturers might have differences in their display capabilities, the sampling 

frame for this study was restricted to office employees working in one firm to improve the homogeneity of computer 

screens and laptop make. Participants were recruited using internal social-media and information exchange sites. No 

compensation was provided for participation. This study was approved by the institutional review board at the Pacific 

Northwest National Laboratory (No. IRB00011131). 

To determine an appropriate sample size, calculations were conducted using G*Power software12. Assuming a medium 

Cohen’s D effect size of 0.3, a power of 0.8, and a two-tailed test, a sample size of 84 was required to examine bivariate 

correlations, and a sample of 90 was required to examine differences using a paired t-test. Hence, for all anticipated 

statistical tests, a sample of 90 was determined to be enough to detect medium size effects. 

2.3 Procedure 

While conducting experiments online has important benefits, it also comes with limitations. For example, different 

computer screens and internet browsers might have different contrast and brightness settings, ambient illumination may 

vary among participants’ rooms, and computer screen size and resolution cannot be controlled. The procedure used in this 

study included steps aimed to help, to some extent, address and document this variability. 

The responses were collected using the online platform SurveyMonkey. On average, it took about eight minutes to 

complete the questionnaire. Duplicate responses from the same participant were prevented without collecting any 

personally identifiable information. After completing the consent form, participants were asked to: 1) view the 

questionnaire on the native laptop or PC screen and not to view the questionnaire using phones or tablets; and 2) to sit an 

arm’s length away from the computer screen in a comfortable position. 



 

 

 
 

An introduction consisted of four parts: 

1.  A set of questions asked about the participant’s laptop make, internet browser, age, and vision condition (e.g., if 

they needed lenses and whether they were wearing them or not). 

2. The participants were shown two gradients (Figure 3) – one with black background and another with white 

background – and asked participants to click on the darkest/brightest bar that they could distinguish from the 

black/white background. Participants were not instructed to adjust screen contrast or brightness; instead, a 

procedure was used to ensure that participants could discern between different gradient levels, similar to the 

procedure used in previous studies13,14. Gradient discernment was checked because it was thought that contrast 

levels might affect perceived uniformity. 

3. To ensure a consistent viewing size of the patterns across participants, participants were asked to adjust the 

viewing size (zoom) settings of their internet browser. The questionnaire showed a picture of a driver’s license 

card and asked participants to hold their own license card against the screen while adjusting their browser viewing 

size to match the size of their actual card. 

4. To help explain the questionnaire and patterns, participants were shown a picture of an office space with a 

luminaire, provided with a definition of uniformity as “the consistency/evenness of color across the face of the 

fixture” and viewed examples of a very uniform and a very non-uniform pattern. 

 

 

Figure 3: The gray bars with a black background (top image) and white background (bottom image) that were used to check 

gradient discernment. The red arrows highlight reference RGB values. 

After the introduction, the two-alternative forced choice method (2AFC) was used such that each pattern was paired with 

every other pattern for uniformity assessment. Additionally, null conditions were created by pairing each pattern with 

itself. Participants were asked to assess the uniformity of the resultant 36 combinations/comparisons, responding to the 

prompt: “Please look at the two light patterns and click on the one that looks more uniform.” The order of pairs was 

randomized to address order bias, and the left/right position of patterns was counterbalanced across participants to account 

for potential left/right bias. 

3. RESULTS AND ANALYSIS 

A total of 118 responses were collected. Incomplete responses (n = 8), those that needed corrective lenses but were not 

wearing them (n = 8), those with a visual disability that could not be corrected (n = 1), those that were not able to adjust 

their screen setting (n = 3), and those that could not distinguish at least the bar with RGB = 246 from the white background 

(n = 4, see Figure 3) were excluded. The reason the white background differentiation test was used for exclusion is because 

patterns generally did not include dark areas with RGB smaller than 147. RGB = 246 was used as an exclusion criterion 



 

 

 
 

because responses below that were determined to be outliers (i.e., values that lie beyond the whisker: 75th percentile + 1.5 

x interquartile range). These criteria resulted in 94 responses that were included in the analyses. Of the 94 participants 

whose data was included, 66 needed corrective lenses and were wearing them while completing the questionnaire. 

Regarding computer screen makes and internet browsers used, 62 participants used a Dell screen, and 83 used Google 

Chrome. The rest of participants used HP (n = 14), Acer (n = 1), Mac (n = 8), and other screen makes (n = 9). There were 

nine participants that used Firefox, and two that used Internet Explorer. Participants’ ages were distributed across different 

age groups such that 17 participants were within the 18-29 age group, 21 were within 30-39, 22 were within 40-49, 20 

were within 50-59, 12 were within 60-69, and two were within 70-79. This paper did not explore potential effects of 

computer screen make, internet browser, corrective lens use, or age. 

3.1 Statistical Analysis 

The mean number of times each pattern was selected as being more uniform is provided in Figure 4. Given that data from 

the two-alternative forced-choice procedure are ordinal related data, the non-parametric Friedman Rank Sum test was used 

for analyzing complete block designs where there were k = 8 experimental treatments (patterns) and b = 94 blocks 

(participants). Assumptions of ordinal data and randomized presentation order were evaluated and confirmed to be met. 

This test was conducted using R stats package and confirmed a significant difference in perceived uniformity among the 

eight patterns Χ2(7) = 427.95, p < 0.01. After the Friedman test confirmed a significant difference, analyses of the 

previously identified pairs of interest were conducted using the Wilcoxon Signed Rank test. To address the first hypothesis, 

three pairs similar in UHVS (A-B, C-D, and E-F) were tested. For the second hypothesis, there were several pattern 

combinations that could be compared, but we focused on three pairs that had visual similarity in terms of the geometrical 

arrangement of point sources and had different UHVS values (A-C, C-E, and F-NU). Testing six comparisons required 

adjusting alpha, using the Bonferroni correction, to 0.05/6 comparisons = 0.0083 at the 5% level and 0.01/6 comparisons 

= 0.0016 at the 1% level. In the results below we use these corrected alpha levels and report the effect size. 

 

Figure 4: Mean number of times selected as more uniform for each pattern. Self-pairs (null conditions) were not included in 

this analysis, hence the maximum number of times a pattern can be selected as more uniform was seven. The bars show 

95% confidence intervals. The symbol ** refers to the adjusted 1% significance level (p < 0.0016); and NS indicates not 

significant. The orange brackets are for comparisons between patterns with UHVS within ± 0.01, whereas blue brackets are 

for comparisons between patterns with UHVS > 0.01. 

The Wilcoxon Signed Rank test showed that uniformity ratings for pattern B were significantly higher than A (p < 0.0016, 

r = 0.39) and ratings for E were significantly higher than F (p < 0.0016, r = 0.46). No significant difference was found 

between patterns C and D. While uniformity ratings for C and D were not significantly different, the results for A-B and 

E-F suggest rejection of the first hypothesis, which expected patterns that had similar UHVS values (± 0.01) to receive 

similar uniformity ratings. 



 

 

 
 

Regarding patterns that had different UHVS values, uniformity ratings for patterns A and C (p = 0.012) as well as F and NU 

(p = 0.27) were not significantly different. Uniformity ratings for pattern C were significantly higher than E (p < 0.0016, 

r = 0.77). Thus, the results suggest rejection of the second hypothesis, that a difference in UHVS greater than 0.01 would 

lead to differences in perceived uniformity. 

3.2 Null conditions 

The analysis of null condition pairs (i.e., each pattern paired with itself) examined the percentage of times the pattern on 

the left and right were selected (Table 2). Wilcoxon Signed Rank tests showed no significant differences in any of the null 

comparisons, as well as no significant differences in overall left/right choices, indicating no significant left/right bias in 

the responses. 

Table 2: The percentage of times left and right patterns (null conditions) were selected as more uniform. 

Pairs Left pattern (%) Right Pattern (%) 

A-A 50 50 

B-B 44 56 

C-C 50 50 

D-D 41 59 

E-E 48 52 

F-F 46 54 

U-U 50 50 

NU-NU 55 45 

Overall 48 52 

 

3.3 Thurstone Model for Paired Comparisons (Case V) 

Thurstone’s Case V model is a popular method that can be used to investigate responses from paired comparisons where 

a participant is asked to select one of two stimuli15. This model assumes that 1) each participant has a continuous preference 

for each stimulus; 2) these continuous preferences are normally distributed; and 3) continuous preferences are uncorrelated 

and have a common variance.16 The number of times each pattern was selected over another pattern was formulated as a 

proportion matrix. The R package ‘psych’17 was then used to calculate scaled Thurstone’s values for all patterns, with a 

goodness of fit of 0.98. 

The scaled values for all patterns are shown in Table 3. These scaled values are at the interval level and can be used in 

parametric statistical tests. Table 4 shows Pearson’s correlation results. In this analysis, five metrics were examined, which 

required adjusting the significance level using Bonferroni correction 0.05/5 = 0.01, and 0.01/5 = 0.002. The EU metric 

was shown in a previous article7 to be exponentially related to perceived uniformity; hence a log transformation was 

applied to the scaled Thurstone values. A constant of one was added to these values to avoid a zero value for pattern F. 

Both the UHVS and the Max:Min metric values were significantly associated with scaled Thurstone values (p <0.002), 

though the percent of variance explained using UHVS was higher (r2 = 0.94). This result supports the third hypothesis 

expecting UHVS to be significantly correlated with perceived uniformity ratings. 

Table 3: Scaled Thurstone values represent the perceived uniformity of patterns using the paired forced-choice 

responses. A higher value represents higher uniformity. 

 Patterns 

A B C D E F U NU 

Scaled Thurstone value 2.47 2.60 2.19 2.09 1.35 1 3.45 1.07 

 

 

 

 



 

 

 
 

Table 4: Linear regression models of Thurstone scaled values+1 as predicted by each metric. P values adjusted 

to 5% to 0.01 (represented with *) and 1% to 0.002 (represented with **). nl: The log of Thurstone scaled 

values were used in the regression with EU to transform the exponential relationship to a linear relationship. 

Statistical test Parameter Uniformity Metric 

UHVS Max:Min Avg:Min EU nl CV 

Pearson's 

correlations 

Coefficient 0.97** -0.94** -0.7 0.61 -0.76 

p value <0.002 <0.002 0.05 0.11 0.03 

Linear 

regression 

models 

r2 0.94** 0.88** 0.50 0.37 0.57 

p value <0.002 <0.002 0.05 0.11 0.03 

Estimate 11.05 -2.42 -5.48 46.84 -9.28 

 

 

Figure 5: Scatterplots showing the relationship between different metrics and scaled Thurstone values. The red 

line is a linear regression fit. The letters refer to the patterns. 

 

4. DISCUSSION 

Although pattern pairs like A-B and E-F were similar in their UHVS values (within 0.01 UHVS units), there was a significant 

difference in their perceived uniformity. Pattern B, for example, was perceived more uniform than A. This could be due 

to assumptions underlying exponents in the UHVS equation like α, β, and κ. For example, adjusting alpha from 1 to 0.7 

increases regression model r2 from 0.94 to 0.99 and results in a higher UHVS for pattern B (0.891), compared to A (0.863). 

Based on the results of this study, there seems to be other factors that influenced uniformity ratings beyond those addressed 

in the current UHVS formulation. 



 

 

 
 

In contrast, patterns A and C had a difference of 0.07 in UHVS but the results did not show a significant difference in ratings. 

Likewise, subjective uniformity ratings for patterns F and NU were not significantly different. It should be noted that the 

pair A-C had a p value = 0.012, which is close but did not achieve statistical significance using the Bonferroni corrected 

threshold of 0.0083 at the 5% level. On the other hand, the pair F-NU had a relatively small difference in UHVS (0.02) and 

they both consisted of small bright light sources. These reasons warrant further exploration. 

Overall, UHVS showed better correlation with perceived uniformity than other metrics. Max:Min ranked second and 

performed better than Avg:Min, EU, and CV for this limited set of stimuli. Pattern C had a higher Max luminance value 

than D, though that did not seem to have affected perceived luminance ratings (Figure 5). The improved performance of 

UHVS might be due to its accounting for contrast sensitivity and spatial frequency of patterns. One advantage of using UHVS 

is that the range for UHVS is known (between zero and one), compared to Max:Min, which has a much wider range. 

Technically, Max:Min does not address how abrupt or smooth the transition/gradient between the point with highest 

luminance and the point with lowest luminance is. It is important to note that the stimuli used were specifically chosen to 

examine UHVS—and UHVS and Max:Min are not always as well correlated as they are in this study—hence the current 

results on the performance of different metrics require further investigation. 

It is important to interpret the results of this study considering several limitations. The decision to use a two-alternative 

forced-choice procedure might have made it easier for participants to judge the uniformity of patterns compared to a rating 

procedure where each pattern is individually presented on the screen. However, the use of this procedure limited the 

number of patterns that could be included. Therefore, the patterns examined in this study are unlikely to represent the wide 

range of luminance distributions seen in luminaire apertures. 

Another limitation is related to viewing the patterns on a computer screen compared to viewing the luminaire aperture in 

an interior space. Luminaire apertures are most likely seen by occupants in perspective view from many different angles, 

such as while walking around in an office space or conducting different tasks. In addition to viewing angles, the luminance 

range of the aperture and its physical context might affect perceived uniformity. The impacts of these variables warrant 

further investigation in future studies. 

5. CONCLUSION 

In this study, the ability of UHVS to consistently discern differences between patterns was examined. Specifically, we 

investigated whether patterns that had a small difference in UHVS (± 0.01) would yield similar perceived uniformity ratings 

(first hypothesis), and whether a larger difference in UHVS (> 0.01) would yield different ratings (second hypothesis). In 

both cases, the results were mixed, indicating that the UHVS does not match perceived uniformity in all situations. 

Assumptions underlying UHVS and other factors might have contributed to these results. Nonetheless, UHVS had a 

statistically significant correlation with perceived uniformity, confirming the third hypothesis. Overall, UHVS might be 

used for general guidance such as to rank a set of patterns from highest to lowest in uniformity but might not be able to 

consistently predict similarities or differences in perceived uniformity ratings. Further studies are needed to examine UHVS 

in laboratory settings under different luminance ranges and patterns. Further refinement of UHVS might make it effective 

for use by lighting manufacturers or in other situations where greater specificity is needed. 
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